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CHORDWISE AND COMPRESSIBILITY CORRECTIONS TO SLENDER-WING THEORY !

By Harvarp L.ouax and Loua Spuper

SUMMARY

Corrections to the solutions given by slender-wing theory for
the lift distribution on triangular and rectangular wings of low
aspect ratio are obtained in fwo steps. First, slender wing
theory is used to find the load distribution orer ¢ wing of gicen
shape. Second, the spanwise variation of the loading so ob-
tained is left unchanged but the chordwise rariation 18 modified
by satisfying an appropriate integral equation. Results are
shown for flat-plate wings and, in the case of the subsonic,
trigngular wing, @ comparison i3 made with other theoretical
solutions and experimental resulls.

INTRODUCTION

The calculation of loading on three-dimensional lifting

surfaces is 8 fundamental problem in aerodynamic research.
The complexity of the problem has led to the development
of certain simplified theories by means of which the loading
on special types of plan forms can be estimated quickly.
The amount of error which these estimates contain is of
copsiderable interest, as are methods which will tend to
correct such errors without undue labor.

Slender-wing theory applies to one such simplified body
of analysis. There are two basic assumptions of this theory.
One, the angle of attack is small enough so that the vortex
sheet lies in the plane of the wing and the boundary condi-
tions for the wing can be projected onto a horizontal plane
parellel to the direction of the free stream; and the other,
that either the chordswise gradient of veloeity is small enough
or the free-stream Mach number is close enough to unity
that the linearized partial differentisl equation which governs
the fuid flow becomes Laplace’s equation in a plane trans-
verse to the free-stream direction. References 1 through 6
are -examples of papers developing slender-wing theory

The magnitude of the error of such a theory, in the case
of subsonic flow, is indicated by observing solutions for
triangular wings. Slender-wing theory gives a finite value
for the loading along the trailing edge. Proper inclusion of
the chordwise and compressibility effects results in solutions
that satisfy the Kutta condition and make the loading fall
to zero at the trailing edge. It is the purpose of this report
to study such modifications.

The corrections due to the chordwise and compressibilit,y
effects are obtained in the followmg manner: First, an in-

t Supersedes NACA TN 2208, “Chordwiss and Comptuslbmty Corrections to Blender-
Wing Theory,” by Harvard Lomax and Loms Sluder, 1961.
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tegral equation is set up relating the shape of the wing
surface to the lift distribution;second, this integral equation
is solved for the given shape under the assumption that the
chordwise veloeity gradients are small or that the freestream
Mach number is unity; and finally, the integral equation is
reinspected for the same wing shape, this time with the
spanwise lift distribution fixed at the variation just obtained
and with the chordwise variation as the unknown and the
Mach number terms included. _

Results are presented and discussed both for triangular
and rectangular, flat-plate plan forms in both subsonic and
supersonic flow. '

LIST OF IMPORTANT SYMBOLS

. [b?
A aspect ratio <§)
b span of wing measured normal to plane of
symmetry
o root chord of wing
C. lift coefficient hf;
Cu pitching-moment coefficient _
pitching moment about leading edge or a.pex)
aSeq .
Et k) incomplete elliptic integral of the second kind

with argument ¢ and modulus &
t It
| zeb= [V 5EE &)

complete elliptic integral of second kind, K (1 k)
incomplete elliptie integral of the first kind
with argument ¢ a.nd modulus &

[P [ =)

K complete elhptu: integrel of first kind, F(1,k)
m for triangular wing, slope of leading edge rela.tue

to plane of symmetry
A, free-stream N ach number

E
Fit k)

Vo
(speed of sound in free stream

? static pressure

Ap DPi—Px

q free-stream dynamic pressure (% pa Vi o’)
8 Semispan of rectangular wing

S areg of wing
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U perturbation velocity component in the direction
of the z axis
Auw Uy —Ug
Vo free-stream velocity
w perturbation vclomty component in the d1rect,1on
of the z axis :
Wo —~Voa
9,2 Cartesian coordinates of an arbitrary point
LU Cartesian coordinates of source or doublet
position
%
To c—u
a angle of attack
8 V[1=24]
i pgm
Po density in free stream
o, 0p doublet weighting factors
@ perturbation velocity potential
Ap Pu— @
SUBSCRIPTS
{ conditions on lower surface of wing (at z=0—)
U conditions on upper surface of wing (at z=0-)

THE INTEGRAL EQUATIONS
SUBSONIC

Triangular plan form.—A general solution of Laplace’s
equation which is suited to problems in linearized subsonic
wing theory (given, e. g., in refcrence 7} is that which relates
a velocity potential or perturbation velocity to the value of
its jump across a given surface. For the lifting triangular

wing shown in figure 1 this can be written

_zB [ mah Audy1 _
““hﬁ W ) [ w P F B~y e D

where g=+/[1— 2,7, u is the perturbation vclocity pa.rallélu

to the x axis, and A is the jump in % over the wing plan form.
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X
F1auRE 1.—Triangualar-wing coordinste system.
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In linearized theory this jump can be related to the loading
cocfficient Ap/g by the equation

e

Further, the velocity potential ¢ can be found by the relation

ga=fr wdz

Operating on equation (1) in this manner and interchanging
the order of integration gives

- (A) ,}[ T

I—T: .

\"(z—In)’+ﬂ’2’.+ﬂ’(y—y:)’:| ®

which represents, physically, a distribution of elementary
horseshoe vortices.

The effect of compressibility in a lincarized study of lifting-

surface theory can only enter through the use of 8. Setting

2V
¢=

T—T
_ i
= \(1‘ )+ By — )+ B2t “

it is seen that ¢ is the only term in equation (3) which con-
tains 8. This term has an interesting interpretation in the
light of the study which has been made at sonie speeds. At
My=1 (i. e., $=0), ¢ has either the value 2 or 0, depending
on whether z, is less or greater than r. Henece, for A,=1,
equation (3) becomes

zvf J’mzl (A )dyx

—mzy (Y— yl)z'[‘ z

(5)

Now reversing the order of integration and using the define-
tion implied by equation (2), namely,

Ap 2 dAe )
TV, oy
gives finally
z ™ Apdy _
‘9—21‘. -mz(y_’yl)2+Z’ (6)

Equation (6) has been studied in reference 5 as the funda-
mental equation for slender wings or wings flying et ncar
sonic speeds. It is an equation which gives the solution for
the velocity potential in a three-dimensional flow in terms of
two-dimensional doublets, the two dimensions being al right
angles fto the free-stream direction. A solution of such a
nature is 1mmed1ately implied by the physical character of
both sonic wing theory, in which the Mach cone has degener-
ated to a Mach plane, and slender-wing theory, in which the
wing is so slender that the chordwise gradient of velocities
can be neglected compared to the vertical and lateral
gradients.

By comparison of equation (5) with equation (3}, it is
seen that the term ¢ ean be interpreted as a factor which
corrects the slender-wing-theory resulis as given by equalion
(58) for the effects of chordwise gradients in velocity and
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Fravex 2,—Typleal varfation of ¢ over s triangular wing.

compressibility. By consideration of the effect at one point
of the distribution of doublets over the wing, this correction
can be visualized as a reweighting of the two-dimensional
doublets according to their position relative to the point.
Figure 2 indicates the variation of ¢ across the span at various
chord stations for =0.6. Observe that the doublets ahead
of the point at which the potentisl is to be determined are
still weighted far more heavily than those behind the point.
The effect of considering 8 different from zero, however, is
to reduce the extreme difference in weight occasioned at
B=0 so that the doublets behind a given point do have some
effect on the induced velocities there, and the doublets ahead
of a point induce a somewhat smaller disturbance than
before. Since the strength of these weighted two-dimensional
doublets is given by the magnitude of the three-dimensional
loading, their strength is zero everywhere off the wing plan
form including the area behind the wing occupied by the
vortex wake.

Two different methods for the further reduction of equation
(3) will be considered. The first method involves finding the
vertical induced velocity for points along the z axis, while
the second involves finding the average vertieal induced
velocity along the span at a given chord station. The first
method must be discerded for triangular wings because of
difficulties around the apex; the second, however, proves to
be satisfactory. The simplification obtained by considering
the vertical induced velocity for points along the r axis will
be considered later in connection with the rectangular wing.

Since it is easier to consider first the averaging process,
the operator

. 1 a mz
8% 3 32 ) eV

is applied to the weighted doublets, o2/[(y—v1)?+ 2%, of equa-
tion (3} with the result that S

1
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where 7 is the average value of the vertical induced velocity

along & given span. _ o
The solution for Apfq obtained from slender-wing theory

can be written 2 .

Ap 4womix 1-1) '
q 17 o\’m"x =t T Co (@)

where in that theory fi(z:/ce}=1. If the value of Apfg
given by equation (8) is placed in equation (7), the resulting
integral equation can be written in a simplified form if it is
noted that '

= (™ [\e=2F+ Bz =y =z F T B matvF |
R mr—iy, mz+y
1 1
% mdy,
‘\lm’xlz—yl’

f mete) Nz —zf 1 Bytdy
me—z) 9y — M —z )+ 2mz— g

where for the first term in the brackets the tran.sfomxdtion

®

g=mzr—y; was used and for the second the transformation

n=mx+y;. Hence, equation (7) finally reduces to the
following

w, [ f: Tl'lfl (:—:) dzl_l-j;% I:Ilfl (:_;) dxl] (10)

T 2nx AT2—2? (z—zy)

The solution*of equation (10) will be discussed in a later
section devoted to triangular wings. o

Rectangular plan form.—If the plan form of the wing is
rectangular as shown in figure 3, then equation (3) is modified
slightly to the form

L] Ap
=—ZI—I,°fc°dx rc a'?dyz ‘
¥ 8x Jo 1. ~(y—y)*+2t

It is possible in this case to study the vertical induced veloc-
ity for points along the z axis; that is, to find d¢/dz by
equation (11) and then set both y and z equal to zero. In
order to do this a special notation is employed. Thus, if
the indefinite integral of f()/y? can be written (where f(y) is
bounded at y=0)

(11)

(L ay=uap+c
then, by definition,
£ 28 ay=ie)— () (12)
By means of this definition it can be shown (see reference 8)

that
* This solution follows from an analysls of equation (6). Sce reference 5.
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FiaorE 3.—Rectangalar-wing coordinate sysiem .~

"”“fd‘J_.d‘“(A) [ J(z

Tr—I

Gere)

1f 3
A — s
_?p Vc I3 (’) /g% — (14)
integration by parts gives
e far 2l 32'—?/1 )
fr=—(a—a) T-. y (:c--'cl) +ﬂ T
, — ; _ o
and equation (13) can be written
27rcof ( )f’ i—;) 4z (16)

This integral equation has been derived previously by K.
Wieghardt (refercnce 9) with regard to the rectangular-wing
problem. The solution of cquation (16) will be discussed
in a later section devoted to rectangular wings.

SUPERSONIC

Triangular plan form.—In passing from subsonic to
supersonic theory, we pass from the elliptic to the hyperbolic
partial differential equation and in particular from Laplace’s

1The golution for the restangular wing given by slender-wing theory is that the load be
2670 B.CLOSS overy spanwise atrip aft of the leading edge. To find the chordwise correction to
such & theory, therefore, a spanwise distr{bution must be assumed. 8lnce, however, slender-
wing theory also requires an elliptical apan loading for the boundary conditions of a rectan.
gulsr wing to be satisfied, a reasonable cholce {s that given by equation (14).

REPORT 1105—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

equation to the wave equation. The solution which relates
the perturbation velocity  at any point in the field to the
loading on the wing can again be written in terms of an
elementary horseshoe vortex distribution over the wing plan

form. As in reference 8, this becomes
- e J’J‘ (z—x,)A_ud:tldyl 0
2" oz [y — 3+ 27z — 22— By — .y — B!
. Ogp Ap 2Au
and since u—bx:&nd PR A
Yoz f f g [ = :I a7
. =7+ 2 | Ve =2y = —v—F7

where r is the area on the wing bounded by the edges and
the trace of the Mach forecone from the point x, y, 2. Again
the effect of compressibility appears only in the term within
the brackets. Hence, setting

T—I
B y—un)y—

-(18)

T fa—ay— gzt

¢, contains all of the Mach number effects at supersonie
speeds. At My=1, ¢,=1, and since, by the definition of
r, 21 <z, it follows that at sonic speeds equation (17) also
reduces to cquation (5). Therefore the doublet distribu-
tions represented by equations (17) and (3) are consistent
at the speed of sound.

In order that an exact parallel can be provided with the
subsonic solution to the triangular wing, the average vertical
induced velocity for points along a given span is again
considered. It can be shown (reference 8) that in the plane
of the wing

BYobap, Vo g, L
1 —qE-I-‘h_ R.P.J; dxlT—m:, dy

(x._zl) ﬂ’. . A

—— (19)

(y—y)V(z—z) =By —v)

where the order of integration must be carried out as indi-
cated (i. e., the integration with respect to 3 must be made
first). The letters R. P. mean that the real part of the term
is to be tauken. Such a device can be used since the double
integral must always be a pure real quantity in the area ¢
(Apfq is real everywhere on the plan form) and a pure
imaginary quantity over the rest of the area indicated by
the limits on the integrals (see fig. 4). The average vertical
induced velocity along the span may be obtained by applying
to equation (19) the operator

1
) 2mx f ay
and since \
Ap dwomiz,

— 20
| T Vel 0

equation (19) may be written in the form
w=‘ﬂ'3m1;ofs($)+'£_0' f‘ﬂhfaf:(:'cl)dx; (21)

) rzJo z—m
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b
Pan Pure real

S

N
N> \

Pure imaginary —\

/

f
[

P(x)

X)

FriuRR 4, —Regions for which the double Integral term in equation (18) ls & pure realor pure
imaginary.

The dertvation of J; is similar to that used for equatlon )]
and leads to the expression

mEte) V{z—z)'—B'y"dn
Jma-s gyim(e;+-2)—q] [m(zi—2)+ 4l

Is=m R.P- ’ (22)

It is possible to find an exact solution for f3(z) by means
of equation (21), but the discussion of this analysis is reserved
for a subsequent section.

Rectangular plan form.—Equation (19) can also be used in
the case of a rectangular plan form by an appropriate change
in limits; thus,

BV
w=—‘—-—i+ R Pf dzxjr” dyl

(z— rl)—- :
g . (23)

(y—) Vg—a)—By—y)

where again it should be stressed that the order of
integration cannot be reversed. The regions in which
the integration yields real or imaginary rtesults are
shown in figure 5. As in the case of the subsonic rectangular
wing, the value of w will be obtained only along the z axis
so that ¥ in equation (23) can be set equal to zero. The
loading will be assumed to have & form

' IoSﬂf‘<

which is similar to that used in the subsonic case except that
the reference length is now the semispan instead of the chord.
Such a difference is reasonable since in the supersonic case
the position of the trailing edge cannot affect the loading

“on the wing.
Finally, therefore, when y=0 equation (23) becomes

vel—yt (24)
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Frauek 5—Reghons for which the double Integral term fn equation (23) ts pure real or pure
imaginary.

w=1nfl (85)+rsﬂf ] J‘Q?ﬂ =g 0%

(25)
where I, is given by the equation
PRI Jy 2y '
I=R.P. f ‘ /——(z 2V —BUE gy, 26)

The solution of equation (25) is deferred to a subsequent
section.

LOADING ON WINGS

The previous section was devoted to the development of
the integral equations which are to be studied for the two
types of plan forms in subsonic and supersonic flight. In
order that this study can proceed in & natural manner, the
arrangement of the presentation has been changed so that
the plan form is the principal division and the speed is
subsidiary. )

TRIANGULAR WINGS

Supersonic case.—The decision to solve for the loading

on the supersonic, triangular, flat plate by analyzing equa-

tion (21) was not an obvious one since the exact solution of =

the linearized partial differential equation for this case has
slready been obtained. (See, e. g., references 10, 11, and
12.) Thus it is known before starting that the value of
fi(@) in equation (21) must be I/E where E is the complete

elliptic integral of the second kind with modulus yi—m*%.

However, these solutions were obtained by an entirely
different procedure so that by solving equation (21) and
comparing the two results a check on the accuracy of the
method ‘is obtained., Furthermore, when the subsonic
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problem is analyzed the same general procedure will be
followed and the results can then be accepted with greater
confidence.

The first step in the solution of equation (21), in which @
has been set equal to w, since the wing is a flat plate, is to
change variables by the transformation &=2,/. This gives

=0 fa+ 1 [ I8 (27)

In the equation for I, the transformation my,=n/z was used
s0 that

_rﬁr A== pmy,
=& g, /(Erl-l—m)(& 1+171)

which is completely independent of z. The partial deriva-
tive of both sides of equation (27) with respect to « gives

i (@)= ,,ém'ﬁ‘*‘ f’1 (_’“ii”‘*‘ Ig)

Equation (28) is a homogencous linear integral equation.
The solution to cquation (28) is simply f3’(z) =0 or, what is
equivalent, fi(z) equals a constant, (fs)s say. By means of

(28)

equation (27), this constant can be evaluated. Hence,
Tﬁm 1M&l a(ft)d&]
(o] G742 [ 140 (29)

which represents the solution to the problem.
Iy was calculated analytically as in appendix A, and then
the value of (fs)o, as given by equation (29), was determined
by numerical integration. For fm=0.8 the result of this
computation was 0.708; whereas the true value given by
1/E is 0.705.

Equation (27) can also be solved when the wing is slender
with respect to the Mach cone by considering fm to be
small. Setting fm=0 yvields

(+&) dn,

Tadammo=(1—§)

and this is readily evaluated to give

_r(d—&)
([s)ﬁn-u'—"/l —51’

- (30)

The integral equation reduces to

_._f Elfs(xfx)dfl
1—51

which by a retransformation of variables z;=z£, becomes

z=f’$1fa(zl)df€1 )
/] _‘lx’__z.lf

The integral

Ja-&) n1\/(51+1—11:)($1—1+m) o

@1y
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‘Equation (31) is a special form of Ahel’s integral equation,

the unique inversion* of which is, in this case, fy(x)=1.
This is easily verified by direct substitution.

The simplicity of this result is not accidental, of course,
since the value of fy() was originally introduced by equa-
tion (20) as a correctmn factor to the slender-wing-theory
solution.

Subsonic case.—The study of the triangular wing pre-
sented in the preceding section was made first at arbitrary
supersonic Mach numbers and then at a Mach number equal
to 1. In keeping with this order of decrcasing speed, the
subsonic flat plate will be studied first at sonic speed and
then for goneral subsonic Mach numbers.

An inspection of equations (9) and (22) is sufficient to
show that (I)gm-o is equal to ([3)smmo. Hence, cqualion
(30) can be substituted into equation (10) and there results
(since again W is set equal to wp)

n-.z:lfl( )drl ' :ﬁ-xlfl(‘:—;)d.rl:|

vai—z? (Y

2“_2: _2.7 m

and this reduces immediately to

T fi (—) dr,
r= I‘ = s (32}
N —z

It is now obvious that equation (31), which was derived
from supersonic wing theory, and equation (32), which was
derived from subsonic wing theory, are identical. Clearly
this establishes the continuity of the thceory in passing from
the supersonic to the subsonic regimes.

The study of the general subsonic casc leads evcntually
to the numerical solution of an integral equation. However,
an idea of the qualitalive form which this solution must
assume can be gained by some preliminary analysis.

First write equation (10) in the form

I (2) filea)dz
.1 0wy fi(za)dz 1 %2 (:r )
= J Jei—ad T f : (33)

Xo— Iy

where zg—-x/co, a:,—x;/co, and Wjw,=1. The evaluation of I,
is given in appendix A, and a plot of %I, against xs/z, for
(8m)? equal to 0, 0.05, 0.10, and 0.20 is shown in figure 6.
Obviously equation (33) is a singular 1ntu.gml equation,
We have already seen ‘that for Bm=0 it is an Abel type
integral equalnon with a }é-po“ er singularity at the upper

¢ It Abel's equatfon is written In the form
¥ g(z)dx
f(#)-J. g
a V-1

' (x)__l_ df’f(!)dv
&) iy

its fnverslon is

- and this inversion is uniqne for functions £(z) that fulflll the condition

Iim
&) €(rie)m(). a<s<y (a}

Since the solutions for the velocity throughout the flow fleld must also satisly ocondition (a),
the value of g(z) given above Is unique in the class of functlons avaflable,
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limit. For finite values of fm, however, I, is seen from
figire 6 to be bounded and nonzero in the interval
1 < rofrg< @ ; hence, for such Am, equation (33) is a combi-
nution of two types of singular integral equations, the Abel
type and the Cauchy type, the latter having a first-power
singularity in the interval of integration.

Experience with the Cauchy type integral equation

. o

e (34)

whieh arises, for example, in the study of subsonic lifting-
line theory and two-dimensional airfoil theory is useful in
the present problem. Thus, the solution ta equation (34)
is not unique (even when g(x) is restricted according to
equation (a) in footnote 4) unless some additional condition
is given. Such a condition might be the requirement that
g(1)=0; this would correspond in two-dimensional airfoil
theory to the specification of the Kutta condition at the
trailing edge. Further, it is known that if the econdition
gtl)=0 is satisfied in equation (34), then g(r) tends to
infinity as z approaches zero.

Since the solution to equation (33) must also satisfy the
Kutta condition, the above discussion leads one to anticipate
for the shape of f;(ze) & curve something like that shown in
figure 7 (&). On the basis of such qualitative knowledge, a
simple numerical procedure was set up and used to calculate
the solution to equation (33). This procedure, which is
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based on the assumption that fi(z,) is constant over each of
nine equally spaced intervals, is presented in appendix B.
The results of the analysis for (8m)* equal to 0.1 (i. e,

BA=1.26) are shown in figure 7 (b). :

In order to check the results derived from the method just
mentioned, equation (33) has been solved in an alternative
manner. In this second approach it is assumed that f,(z)
can be approximated by a second degree polynomial which is
multiplied by two factors, one that vanishes for z;=1 and the
other that tends to infinity as z, vahishes.

First consider the behavior of fi(z,) for small z;,. A brief
study of the solutions to the two integral equations repre-
sented by equations (32) and (34) will illustrate how f;(xp)
can be analyzed in the vicinity of the origin. First consider
the Cauchy type integral equation (34) and assume that for x
small g(z) can be expressed in the form

g(r)=% _Z:g auzt,  1>8>0

Then equation (34) becomes ) LT

L I"_‘dl‘
r—y

f=a [ G fE 3,

A=l a
which in the limit as ¥—0 reduces to

= &1 _lim t_dr
SO+ 24 75— v %, =y —z)

2.0
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o
3

)
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Finree 6.—Varlation of Ii/2 with 1s/v.
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or, setting z=y¥§, to

lim 1 (MY
0 .yﬁ i}

e‘u —D RO

The term on the left is indeterminate and implies

lim (1Y __dE T _dE
v o BA—0 Jo FI—9

This equality is satisfied, since & is to be greater than zero and
less than 1, only by the value §=%. The fact that this must
be the exponent of 1/zin the expression for g(x) can be verified
by inspecting the known solution to equation (34).

A similar analysis applied to Abel’s integral equation in the
form given by cquatxon (82) shows for that case § must be
zero which, again, agrees with Lhe known inversion.

Finally, in appendix C this same approach is used to dis-
cover the initial behavior of f;(z) in equation (33). Figure 8
presents the results of this analysis throughout the range of
A for which I, was calculated.

As was already mentioned, the variation of fl(a:o) in the
vicinity of z,=1, that is, near the trailing edge of the wing,
is fixed by the Kutta condition. A useful statement of this
condition that holds in both subsonic and supersonic flow is

a———=r cot [(1—8)x]=0
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FiauBk 8,—Varlation of & with reduced aspect ratio 4.

that the magnitude of the loading at the trailing edge must
not be_ infinite. However, the only pertinent solution i
equntion (34), and hence to cquation {33), that is not infinite
at z=1 is that which is identically zero there. Further, as
the Lrallmg edge of the triangular wing is more and more
closely approached, it is reasonable to expect that the shape
of the load distribution in its vicinity approaches that in the
vicinity of a simple two-dimensional wing trailing edge, tho of-
feet of the wing plan form vanishing as the ratio of the dis-
tance from the leading to trailing edge tends to infinity. On
the basis of these considerations, fi(xy) should approach zero
as the term (1—a,)* approaches zero when x, tends to 1.

It is also apparent, however, that f;(x,) equals 1 for all z,
between zero and 1 when the Mach number is unity. Fur-
ther, as A, approaches 1 or as the angle of sweep approaches
90°, the effect of the plan form on the shape of the loading
near the trailing edge becomes increasingly important or, in
other words, the trailing edge of the triangular wing must be
more and more closely approached before the shape of the
two-dimensional load distribution is simulated. An ex-
ponent to (1—xg) which satisfies this requirement as well as
those in the preceding paragraph is v/2(y-+1—zp) whereyis a
Tunction of Mach number and vanishes as Af;— 1.

Finally, therefore, it is assumed that fi(x) can be expressed
by the equation

Silzg)=

(1—agracrtioo
Io‘

(@t @129+ azze®) (35)

The values of the constants a,, a1, ¢z, and v are determined by
satisfying equation (33) at four chordwise stations and are
given for (fm)* equal to 0, 0.1, and 0.2 in table I. The
accuracy Lo which these solut,lons satlsfy the integral cquatmn
i3 indicated by table IT.

A comparison, for (§m)?*=0.1, betwecn the solution given
by equation (35) and that derived by the method outlined in
appendix B is shown in figure 7 (b). Tho strietly numerical
method presented in the appendix was used for three different
interval spacings, results for which are indicated in the fig-
ure by the symbols. Presumably the accuracy of the method
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increases with increasing number of intervals used. A study
of the figure shows that the numerical method is apparently
approaching ¢ the solution given by equation (35). Subse-
quent values in this report are based on the solutions repre-
sented by the latter equation.

The final curves for f;(z,) are shown in figure 9. A discus-
sion of the integrated values of the loading will be given later.

RECTANGULAR WINGS

The discussion of the triangular wing was divided accord-
ing to the Mach number. The same division will be used in
this section, starting with the discussion of the results for
supersonic speeds, then with that for both supersonic and
subsonic theories at sonic speeds, and closing with a discus-
sion of the subsonic development.

1.6

I.4\

1.2 ~]

\k
10 —— R{
~— /01

4Liix) 8 \\
[} - \ \

o] .2 4 .6 8 1.0
xp )
Fmuez 9.—Final values of fi{ze) given b)lr equetion (35) and table L

Supersonic cese.-—The solution of equation (25) will give
the loading on a rectangular wing flying at & supersonic
Mach number. The evaluation of the integral I, is carried
out in appendix A where it is shown that I, can be expressed
in terms of complete elliptic integrals of the first and second
kinds. Having the expression for I,, a numerical solution
may be obtained for f,(x/s8) (see appendix B). Figure 10
shows a plot of f, (a factor representative of the chord lift
distribution) for a flat plate wing e&s a function of x/sB,
the ratio of the distance back from the leading edge to the
magnitude of the reduced semispan. The value of f, given
by equation (25) can be checked in the interval 0 <(x/sg8) <2
because the exact solution to the complete linearized partial
differential equation can be readily obtained there. The
comparison is given in figure 10. The fairly rough agreement
shown is not surprising since equation (25) is derived on the
assumption that the spanwise distribution of load is elliptical
at every chord station, and certainly this assumption is
least accurate in the interval where the comparison with
the exact results is made. The area under the exact and
approximate curves in figure 10, between the initial value
and that at which f,=0, is nearly the same. (See the next

$ The maximum difference In. tofal Iifr is already less than 8 percent (based an the lower
value) and the difference in center of pressure Is negligible,

272488—54——=68
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section on Aerodynamic Characteristics.) The integrated
value of f, as given by equation (25), therefore, can be used

for z/s8>2.
As for the qualitative nature of the variation, ﬁgure 10

shows that the loading on & narrow rectangular wing flying _-
at supersonic speeds falls linearly to zero, becomes negative,

and then oscillates between negative and positive values,
the amplitude of the oscillation being so heavily damped
that after the third change in sign the magnitude is practically
zero.

It should be noticed in studying the results of figure 10
that the entjre resultant lift of the wing is concentrated

in the interval 0<(z/s8)<2. But as the Mach number __,

approaches 1 this interval approaches zero, and the entire
lift of the wing is carried in a strip along the leading edge.®
Such & solution violates, in the vieinity of the leading edge,
the assumption on which the theory is based and should
be considered only as a theoretical limit.

Results for the lift and pitching moment on the rectangular

wing will be developed in a later section.

Subsonic case.—The study of the subsonic rectangular
wing stems from equation (16). The first step in tke analysis
of the equation will be to consider its solution at fs=0

and show that this is continous with the supersonic results:

there.
The value of I, can be written (equation (15)} as

ne [ EEEEE,

and for Ss=0 this becomes

21 S:l:

(z—:tl)r
{—(.‘r—a:l)r o>

and hence equation (16) can be written

_wo 7 (a0
_Goﬁ f’(%)d“ (36)
16
4 (2/BA
121 c“':Ia_-/; fa(xp)dx,
\
8 \\\
fq
\x.’Exuct linearized
4 C value
N
0 i \\ /./ —
\\,
=4 0 2 3 73 5 3 7
x/8

Fiaure 10.—Variation of chordwise correction factar fi for supersonle récts.nxuhr Wing.

¢ This result also bllows by nspecting aquntloz_z (25) for the values Se=0.
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Equation (36) is identical with the form of the supersonic
equation (25) at 8s=0 so that once again the continuity
of the subsonic and supersonic theories at tlie sonic speed
range is established. Furthermore, equation (36) shows that
if w/w, is constant then fi(x,) must be. zero everywhere
except at points where it can be represented by & pulse,
the integral of which has a finite magnitude. From the
supersonic discussion, it is clear that one such pulse exists
and is located at the leading edge.

The evaluation of I; for Bs>0 is given in appendix A.
The numerical solution to equation (16), assuming the Kutta
condition at the trailing edge, is given in appendix B for
values of reduced aspect ratio .4 equal to 0.33, 1.0, 1.5,
and 2.0 For an aspect ratio equal to 2, these values corre-
spond to Mach numbers of 0.986, 0.866, 0.662, and 0, respec-
tively. The results of the computations are shown in figure
11 where the chordwise lift distribution factor f3(x) is plotted
against «o for the various values of 8. By comparison of
figure 11 with figure 10, it cah be scen that in the subsonic
case the loading drops monotonically from infinity at the
leading edge to zcro at the trailing edge and does not oscil-
late in the afterportion, as in the case of the supersonic wing.

When 8 equals one, these results can be compared with
those obtained by Wieghardt and presented in reference 9.
Figure 12 shows the comparison for two values of the aspect
ratio. Curves are also shown inthe figure for the loading
obtained by using the method given in appendix B but by
satisfying the integral cquation at only six and three points.
The latter curve is in better agreement with Wieghardt’s
result and, since Wieghardt (although using & different
method involving Birnbaum functions) used only four points,
this may account for the diserepancy between the final
results of this report and those of Wieghardt.

2.0

G _[' fz(xo)dxc :

N 1
.2 ~p-2.0 —
\\// {15 | '
p; <21~ 1.0
2 \\ ey 1/3 i .
N .
8
AN
\ 420
- 1.5

N
4 N 7
\ \\(\,(, j/‘ 1.0

N

0 S22 4 3 8 10
o

Fiauex 1! —Variation of chordwise correction factor /1 for subsonle rectangular wing.
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Firivne 12.—Load distribution along contor 1ine of rectangulur wing.

AERODYNAMIC CHARACTERISTICS

The previous section presented solutions for the loading
on triangular and rectangular wings flying at subsonic and
supersonic speeds. This section will be devoted to the con-
version of these loadings to expressions for lift and contor
of pressure.

LIFT

By definition the lift coefficient can be writien

1 A
CL:E.{L—QB dz dy

and this will be evaluated for the various cases for wlhich
the loading cocfficient has been obtained.

Supersonic triangular wing.-—Since the exact linearized
value for the loading on the triangular wing flying at super-
sonic spceds has been derived, the lift coefficient ean be
written in the form

(37)

pL- T
wA=3E 38)
where A is the aspect ratio and E is the elliptic integral of
the second kind with modulus k= +/1—g*m?.

. Bubsonic triangular wing.—In the case of the subsonie
triangular wing, equation (37) becomes

12 cﬂdx_"‘" 4am2‘ f()y

meg” Jo

-

and t.hJs becomes (since A=4m)

a.

%=T Ll Iof1($a)d$g (3 9)

The numerical evaluation of equation (39) is not difficult
since zpf1(%o) vanishes at r,=0.

Supersonic rectangular wing. --For values of ¢;<{2s8 the
exact value of the lift coefficient on a rectangular wing flying
at supersonic speeds has becn obtained and can be written
in the form for 8A>1

Cr 4BA—2 '
A= BAY (40)
When BA<1 equation (37) must be used in connection with
equation (24) and there results
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(= "sc r f_.sﬂf‘ sﬂ) T—ydy

which reduces to
(r_or J 1) .
L B Js f‘(sﬂ dr

and this ean be written in the form

aA ,3Ac0 { (c ﬁA) dz

which becomes, if r,= A
for gA<1
H“; f4(1'2)d9~’2 (41)

Bubsonic rectangular wing.—The equation for the loading
on a subsonic rectangular wing, equation (14}, placed in the
formula for lift coefficient yields

P 1 f
L Dsen In

which becomes

—fz (_)\Rz_yz dy

—s Co

———— r fg(l‘o)dl’u (42)
The evaluation of equation (42) by numerical means re-
guires speecial consideration since fi(x;) approaches infinity
at the leading edge as shown in figure 11. To this end, re-
write equetion (42} in the form
'
—' = ’ fo{ro)drn+2J fz(l'a)d-l’o

s

(43)

and equation (B4) in the appendix (for the special case in
which #y=1} in the form

1=g [ "o [ w+ P20 ot

3, _J Fa(x0) [T+A

An application of the mean-value theorem yields

J‘f fﬂ(l'o)dfu

e +AB(TEB:| fr=fore
[ 7

where Ey has the modulus &y which equals 8A/JA(1-F)+ (BA)?
and where 0<8<e. The combination of equations (43)
and (45) yields an expression for the lift coefficient involving
only the load distribution from a distance e/cq back of the
leading edge to the trailing edge.

BAE ) 4, 1t

BAE

T+m — d.ro} (45)

PITCHING MOMENT

By definition the pitching-moment coefficient sbout the
upex or leading edge and based on the root chord can be
written

Sc[,ff Pird, y (46)
Equation {46) will be applied to the various loadings which
have been'studied.

Supersonic triengular wing.—The exact lmeanzed value

for the pitching-moment coefficient on a triangular wing
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flying at supersonic speeds hes been derived elsewhere and

can be written in the form

Cn__ ®
ad™ 3E

Subsonic triangolar wing.—The derivation of the pitching
moment on & subsonic triangular wing proceeds in the same
manner as the derivation of lift and there results

Cn t
&71= — ‘ﬂ'f rozfl(xo)drq

(47)

(48)

This expression can be easily integrated numerically.

Supersonic rectangular wing.—For values of A greater ’

than 1 the pitching-moment coefficient on a rectangular wing

is given by the equation, for fA>1

C

Cu_ 68A—4
ed

When A1 the solution to the integral equation must be
used and the final expression can be written

'a—A:—— o Igf..,(.’l‘z)dl‘g (50)

Subsonic rectangular wing.—The equation for the pitching-
moment coefficient on a subsonic rectangular wing follows
in the same manner as did that for the lift coefficient.
Hence,

&___

xofz(-fo)dl‘o (61)

and, since the variation of iy fa(x,) is as indicated in figure 13
the numerical integration of equation {51) is simple.

CENTER OF PRESSURE

Since the pitching moment is based on the root chord, the
center of pressure of all wing plan forms can be written

Ca

Ca L

Tep.

(52)

DISCUSSION OF RESULTS

Figures 14 and 15 show the variation of the lift coefficient
and center of pressure on triangular and rectangualr wings
for values of 8.4 between zero and 2. For the triangular wing,
the differences between the subsonic end supersonic cases
are not large in this intervel of reduced aspect ratio; the
subsonic wing develops somewhat less lift and its center of
pressure moves forward as 84 increases. The characteristics
of the rectangular wing, however, show a large variation in
passing through the speed of sound.

The subsonic rectangular wing has a variation of (pfda

with Ag which is almost identical with that for the subsonic
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FIauRE 14,—Aerodynamlic characteristics of a triangular wing having s low value of 8.4.

triangular wing. Unlike the triangular wing, however, the
curve for 2., , /¢y on the rectangular wing shows this lift to be

carried farther and farther forward with decreasing gA, from

the quarter-chord position at fA= = all the way to the
leading edge at BA=0.

As the speed is further increased and the rectangular wing
enters the supersonic speed range, the magnitude of the lift
begins to oscillate with increasing amplitude. This continues
until the reduced aspect ratio rises to one, after which, as
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FInure 15.—Acrodynamfe characterisfics of rectangular wing having s Jow value of 8.4,

BA increases still farther, the value of Cp/Ae falls uniformly
to zero according to the expression

C, 4 1
A_f;=ﬁ—A<1—m), BA>1 (53)

which is the exact equation for the lift coeflicient given by
lincarized lifting-surface theory. The difference between

- the values of lift coefficient given by equations (41) and

(53), represented in figure 15 by the solid and dashed lines,
respectively, has already been discussed in the section on
loading; the approximate solution is based on the assumption

- that the span loading at each chord station is elliptical and

such an assumpfion is increasingl; unrealistic for increasing
BA. The dotted line shown in the figure appears to be a
reasonable interpolation between gA=1, the lower limit to
which equation (563) applies, and a point where the approxi-
mate solution given by equation (41) can be considered
trustworthy

The variation of the center of pressure on a supersonic
rectangular wing indicates that the wing is unstable for all
positions of the pivot point behind the leading edge for
values of B4 around 0.4, the center of pressure, in such »
range, having moved forward of the wing leading cdge.
As BA increases past the value of 0.5, however, the center
of pressure moves back along the wing and rapidly ap-
proaches the midchord point, its location for a wing of
infinite aspect ratio.

£
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COMPARISON OF REéULTS FOR SUBSONIC TRIANGULAR
WINGS WITH OTHER THEORIES AND SOME EXPERIMENTS

DISCUSSION OF THE THEORETICAL RESULTS

Several other published theories can be used to calculate
the forces and moments on low-aspect-ratio triangular wings
flying at subsonic speeds. A comparison between values of
(', end center of pressure given by those theories and by
the method of this report is summarized in figure 16.

4.0 —

R L A} T T
¢ =Ta} (G -—TF e
: Le 2 " G BA B4 _ff-
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(a) Lift,
(b) Center of pressurse,
Fravax 16.—Varlons theoretical and experimental resalts for trianguiar wings showing the
variation of 8Cr_ and z.., fes with reduced aspect ratlo, A.4.

The theories of Falkner (reference 13} and Weissinger
(reference 14) are well known and will not be discussed in
detail here.
were presented by De.Young and Harper in reference 15
for aspect ratios equal to 1.5, 2.5, and 3.5; those obtained

The results obtained from WWeissinger's method
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from Falkner's method were presented by Berndl: in reference

16 for aspect Tatios equal to 1.0, 1.67, gnd 2.5, and by
Falkner in reference 13 for an aspect ratio equal to 4. Both
Berndt and Falkner used 126 vortices and 6 control points
so the accuracy of their calculations is similar.
be mentioned, however, that in order to make Berndt's
results consistent with Falkner’s, the values of (;_ given
by Berndt have been multiplied by & factor 7 suggested and
used by Falkner in reference 13.

The results shown for Lawrence's theory were preaented
in reference 17 and are based on a method originally glven
in reference 18.

The differences between vealues obtained from each of the
theories can be attributed to differences in the various simpli-

fying assumptions used. The Weissinger and Lawrence
theories agree on values of (;_ but disagree as to the posmon
of the center of pressure. Falkner’s method and the method
of this report yield results in good agreement for both (7
and center-of-pressure location. However, for g.4=2, the
Weissinger-Lawrence value of €, is about 9 percent bdow
and the center-of-pressure posxtmn about 3 percent (based
on the root chord) farther forward than similar values
obtained in this report & or by Falkner's method. '

DISCUSSION OF THE EXPERIMENTAL DATA

It should

Experimental data for low-aspect-ratio trisngular wings -

are given in references 13 and 19 through 22. The sections,
aspect-ratio range, Reynolds numbers (based on the mean
aerodynamic chord), and section thlckness ratios are given
in table ITI.

The source of the experimental values for the =4 wing
(given in reference 13) is some unpublished British wind-
tunnel data. The Reynolds number is given as “high’ and
the section is not specified. Reference 21 presents the results

of experiments made in the Langley free-flight tunnel on _

some flat-plate (3 inch thick with rounded leading edge)
models having beveled trailing edges. Hence, the values for

_the thickness ratios listed for these tests are effective thick-

ness ratios, being, in fact, the plate thickness divided by the
root mean chord of the wing, (2/38)c,.

The experimental dats presented in table IV are portions

of the data given in references 19 and 20 and the values

shown in figure 16 were obtained from curves constructed ~

by means of these numbers. Reference 21 presents expefi-

mental results in graphical form and the slopes used in
figure 16 were read from these graphs. It should be men- =

tioned that reference 21 also gives results for an aspect
ratio 0.5 wing but the data presented are not sufficient to

T 4ccording to Falkmer (reference 13): “It has not been possibls to establlsh the factor for

all cages, but figures derived from a deita and other wings suggest that the factor can be taken

tentatively as independent of aspect ratlo, and to vary as 11-0.020 (tangent of sweepback of

quarter chord).”

¥ Tt can be shown, however, that the Integral equation used by Lawrence to obtain the
curves shown In figure 156 and the one used fu this report both approach the same values of
C;_. and r..y Jcs A% the angle of sweep goex to efther x/2 or zere. In the former case they approach
the familfar Jones" low-aspect-ratio-theory results, and In the Jatter case they yleld 3r for Cp

and 1/3 for re.pfov.
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fix the slopes of the lift and moment curves near zero angle
of attuck. Hence, no values for this aspeet ratio are pre-
sented. Finally, the values taken from reference 22 were
read from graphs presented therein and based on integrated
pressure distributions (measurements taken slong five span
stations).

COMPARISON OF EXPERIMENT WITH THEORY ~LIFT-CURVE SLOPE

The experimental data shown in figure 16 () do not secm
at first glance to favor either group of theories. However,
since all these theories are based on the assumption of zero
thickness, it is pertinent to examine the data on the basis
of thickness ratio. A correlation on this basis is presented
in figure 17. It shows that with decreasing thickness ratio,
the ratio of the experimental values to thuse predicted by
the method of this report (in the range 0<84<2) or by
Falkner’s method (in the range 2<BA<4) tends to unity.
Of course, this trend is not conclusively borne out by these
comparisons and should be tested by more experimental
measurements in the lower thickness ratio range.

It is interesting to notice that a good approximation to
the results calculated in this report and by Falkner’s method
is given by the equation

2rA

CL¢=pT4,_-{—_2- - " (54)
1.1
.o|—— -
Q
[C""]ex.
[ t"]f/l .
£
.8 N
N - -
0 .02 .04 06 08 10 g2 14

Thickness ratie, ¢

Fiavre 17~Variation of (Cr,) aj{ Cz,) s the ratic of the measured lift-ourve slope to that
given by the theorotfcal methods of Falkner or this report with thickness ratio.
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where
wmg selmpmmete
- wing span

Equation (54) was derived by R. T. Jones (see reference 23)
as a first-order correction to the value of Cp, given by
lifting-line theory for wings having elliptic plan férms. It
has been found, however, to provide a good estimate for the
aspect-ratio correction to wings of various plan forms.* For
the particular case of the triangular wing m compressible
flow, equation (54) becomes

8C, = A

1+%‘—1+1/1+(E;—§"

and its varietion for 0 <BA<4 is shown in figure 16 (a).

(55)

LOMPARISO’V OF EXPERIMENT WITH THEORY-CENTLER-OF-PRESSURE
LOCATION

The comparison between experimental and theoretical
values of center-of-pressure location is shown in figure 16 (b).
In weighting the experimental points shown, it should be
remembered that the tests recorded in reference 21 were
made on a flat plate with a beveled trailing edge. When
such a wing is at a positive angle of atiack, the bevel causes
the flow to separate at the surface discontinuity producing
an effective upwardly deflected flap. The result is a loss of
Iift on the rearward portion of the wing and a forward shift
in center of pressure. Hence, the experimental values for
Zo.p./¢o taken from reference 21 should be low relative to the
values given in the other references. With this taken into
consideration, the experimental values shown in figure 16 (b)
are in fairly good agreement and again favor, at least, the
theoretical results based on Falkner’s method.

AMES AERONAUTICAL LABORATORY
Natronan Apvisory COMMITTEE FOR AERONAUTICS
MorrerT FieLp, Cavir., Nov. 28, 1952.

* This approximation Iy suggested In an article by R. T'. Jones and Dorls Cohen, **Acrody-
namics of Wings at High Speed,” to be published by the Princeton Unlversity Press in
section A of the book entitled Applied High-S8peed Aerodynamics, volume VI of the High-
Bpeed Aerodynamics and Jet Propulsion Serfes.



APPENDIX A |
EVALUATION OF SPECIAL INTEGRALS

THE INTEGRAL I,

The evaluation of I; will be discussed first for the case in
which #>2, and second for the case in which x<lu;.

CASE I, Dn
It is possible to write I; in the form
Bt yug+ B miy?

L= netBmint Al
U e gy —ro) (e n) ! &1

where po=m(z—2) and my=m(x+2;). The linear term in
the lower radical of the integrand can be eliminated by the

transformation 1= (s+38)/(1+t), and the integral becomes

T—pgy

d—a =8
V(po—0) (o—p1) om0
rq—d

'r(#o"{‘ 0”5’”") + (ﬂnz'*‘ F8imhe dt

(141) (o +52) [1 o= m)( —“")

ﬁ—‘ﬂo

(A2)

where

=_—Fo(l-'-o—ﬁzmzm)'l‘l-!o\"(l'l'ﬂzm’)(}lo"l-ﬁ!m’m’) (A3)
B2m*(p1+ po)
and
P ~ polBo—B*m3pr) — V(1 + B2mY (uo + f'm D (A4)

BEm* (1 + o)

The expression for ¢ and § may be combined to give the
useful identities
o= —c88m?

(po— o) (§— )+ (i — ) (6— o) =0

Using fundamental properties of even and odd functions,
equation (A2) may be reduced to the form

: 1 §e  \1
( + Ifl,w‘ 1+ -k’,w)

=2 o Fafim?
\ (P-z - 5) (#o—' 5)

A"+k*w='
\/ I—F de

by the substitution

o= m—3 ]
wi—0
and where
b= (Fl"'ﬂ')za

(ef—08)(5—0)

By introducing the dJacobian elliptic functions in the
transformations w=enu, the integral reduces to '

g2
o [aEieEm x( 3" )
L ‘E\/ G Vo—pd e \ITFodanfs T st/ dWud
' (A5)
where
()
>0 (AB)
k’*—l—% i
and
—(") O
(AT)
klz_l_ k2
The integration o ay now be completed and
== #o"i“s’ﬁ m [y /Plz‘l‘zi G'(—— ¥ - -
k\ (mi—a)e—n) L 'V I+wt vA+k
E Vg +L
i o ()
=2 gm@ 22 A8
_ [,Sm (\ n'+ )+\/; Vel ‘2)] (48)
where .
G(x)=EF (r)+KE' (x)—KF'(x) (A9)

the modulus of the elliptic integrals being & or &/,

CASE 2, x<xl

The procedure for obtaining the solution for 7, in this case
is identical to that followed in case 1 except that in order to
fulfill the contition that £>—1, ¢ end 8 must be defined in
the following manner '

52"1’#1) ;";‘:’\(fﬁj‘f:)m’) (Po"l'ﬁ’m’m’) (Al(])

6=—Fu(ﬂo

T grmu1) -ﬁ—"r;f"(;(; : -1[—- f;m’) (o’ +B*m* ) (Ail)

In this case it can be shown that in equa.tmn (A5) » >0
and va<—1, and the solution for I, is
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mmWHWH}

L OEm } o
kd(#l"‘“)(f'—#u) (A12)
where G(x) is defined as in equation (A9).
THE INTEGRAL I,
Writing I, in the form
=2 f (@— “")’""ylzﬂzwi (A-1 3)
and setting
-Z/——cnu k=
8 (m——:r:)’+ﬁ’8’
I; can be integrated to give
_ Edn'udu_2BsE '
Is—ZﬁSﬁ ——k—'—ﬂT (A14)
THE INTEGRAL I,
CASE 1, g8, <t <t
Writing J; in the form
“d"\/
=8 —
fy=tn [ (1 — ﬂ) (17 #u) (A15)
and making the transformation
2 n— Ho :
sn? u— I—Bg’)k ” (A }_6)
1 -I-(,—0
where
e 200 _ir—io (A7)

T1—0 18+ o
reduces equation (A15) to the form

&

2p0 fx du - e
13'_'(1 +00)k‘\/80(“1_"0) ( 1] 1+1‘)—000 Iczsngu
=30

I‘A’
QU 1

Bodu ) )
__1—-60 )
—5— ksnu

The integration may now be completed and

]
- G( ¢)
Lo= /2#060 k (1 B)K+ 0 1\/0+30
Q
‘/1-[- TN k?

\/ /11 8°00k2[KE (J—)—EF(\/_—)]} (A18)

CASE 2, 0<He<0A

N #u
Is—eof, Vi | e 4y
(=) (1~ o) (n Ho) 7

In this case

- (A19)

: Is—-(1+ﬂo)\/ Zko
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and the transformation

2 n—ke
L
sniu= i=s

is made where

: Ho.
kz____]-'—'ao #l+go

2 pi—po
Equation (A19) then becomes

K - —J'Il. - Budu -
9(/"'1_“0)k 1 60 ! n’u

The integration can be complcted so that

2# 2k7

=
26,(1 — 6, 1—6o-1-26,k%/
1 —6+26,k2 1-+6

86 21— eo)[ ( i— aa)
iraVer—ite | BF lc 2

o+ (59

THE INTEGRAL I,
CASE 1, 0<.X, <X —fs

)+

(A20)

The integral 7, can be written
— 2 I
2f 'J xl): ﬂ d
8 _‘yl

When the transformation snu=y/fs is made the expre ssion
may be integrated Lo give

=2z —17) ﬂ dntudu=2(z—z)E,  (A22)
where
L . 233 A2

S P (A23)

CASE 2, X—fe<Xi1<X

In this case I, can be written
I~T - -
FREPURY 3

=2l =P gy (A2

The transformation snu=pgy:/(x—=) applied to cqualion
(A24) yields

I‘=2£K@%§£ enfudu=2ki(z—z,) B (A25)
where
__z—zl
by= o (A26)
and
Ev—kK, .
B,=;—’—2:F—’ - (Azl)

Y1 (A21)



CHORDWISE AND COMPRESSIBILITY CORRECTIONS TO SLENDER-WING THEORY

APPENDIX B
NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

SUBSONIC TRIANGULAR WING

Since the integral I, is a function only of the ratio x/r,
equation (10} can be written for w=1uy,

1 (T Efilztfedt Col*
=), L [ i nofeta @D

where f=x/z. It is now assumed that f;(x&/e;} may be con-
sidered constant over small intervals, This reduces the
solution of the integral equation to the elementary problem
of solving a system of simultaneous algebraic equations.
On the basis of such an assumption, equation (B1) becomes

=A% l)f , 80 i=123,..n B2
where
st b Gy 05551?
®3)

Co
152515

The function gy£) was calculated by numerical integra-
tion and systems of simultaneous equations were obtained
for values of » equal to 3,.6, and 9. Solutions were found
using the Gauss-Seidel method (for which the simultaneous
equetions were well suited).

SUBSONIC RECTANGULAR WING

Substituting the value of I; given by equation (A14) into
equation (16), one has for w=w,

(B4)

5t (592G 1(3)
where
g (-I? cqu) Iﬁi% 3
and where -‘

_ ps g4
WHr—2 P+ 8% 2—z\' | 441
\/4 ( Co ) +B 4

A satisfactory numerical solution of equstion (B4) requires

the solution of the system of simultaneous equations of the-

form

i {so

2@—1- 1)_|_

()2 (%

#(Ee Gt a5 (2 ——li
fte (2521} B5)

The convergence of the solutions to equation (B5) is indicated
in figure 18 where the value of n was successively taken to be

3,6,and 9.
\
A
el X
A\\
1.0 X
t{\ © 3 Intervals
.8 ‘\ & 6 Intervals
P \ 09 Intervals
6 bt
. aN_
[e] A
~
a 1
BAa=| ﬁ'\n\~ :
2 \g\‘n}
,\b‘*g. - 3
| ~
Q -.'.
Q 2 4 .6 .8 1.0
Xo

Fiarax 18.—Solutions obtalned for the variation of /, with zv using 3, 6, and 9 tntervals In .

equation (BS5).
SUPERSONIC RECTANGULAR WING

Egquation (25) can be written when w=wy 8s

— d
@) o
where from equations (A22) and (A25) -
E, I—o >1 .
& (zsﬁxl) Sr xﬂsx R P
3 —I
l;l.ng Be <t
and where
__ 8B T
kl_:r:—:rl ke PY)

By the application of the trapezoidal rule for. numerical
integration to equation (B6), it is possible to write fi(z/s8)

explicitly as
Kb @05 () AE)] o9

where A(z/Be) is the interval of the trapezoid.
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APPENDIX C

EVALUATION OF &

Consider the integral equation

2T270=J;ro gz,fl(x,)dx,+ Izzlz( )fl(h)d:c2 ©n

‘\/w02_z22 0— T2

In order to study fi(z) in the neighborhood of the origin,
first set za=1,¢ 80 that equation (C1) becomes

0= r rEh (@) dE (V0 EN (DN (B dE
Ji—¢ 0 1—¢

for small values of a3, fi(x) can be

(€2)

then assume that,
expressed as

fl(Iz)“-gf‘- . . e el

From this one has

£ ‘dE

Qp=lim —
20 To®

I-ma £, (e)de:l (C3)
0

e

which immediately implies
1 El—adf

. " e (E)d8=0
VI—§

1—¢

The value of & in the interval 0<BA <2 that satisfies
equation (C4) was determined by mimerical integration.
The results are shown in figure 8.

C4
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TABLE I.—VALUES OF CONSTANTS FOR EQUATION (35)

&m)2
1] 0.1 0.2,
Const.
ay 1.0000 L0040 10813
a [1] 3151 0168
az 0 —. 8422 —. 4481
r 0 .010 022

TABLE II.—VALUES CALCULATED FOR RIGHT SIDE OF
EQUATION (33) USING EQUATION (35) AND TABLE I FOR

£y (xe)

[Ezact solution would, In each case, yield 1.000]

o (Bm)1=0.1 (Brm)t=0.2
a1 0985 0.991
.2 1 000 1.000
2 Lol 1005
% Lo2 L 004
.5 Lo2 1.005
.6 1018 1007
o 1.010 ~999
-8 1.000 1.000
-9 .on T
- 1,000 1.000

TABLE IIL.—RANGES OF PERTINENT PARAMETERS IN

EXPERIMENTS
] .
Th.{ckness
Reference Reynolds
Bectlon shy; ratios

number P (percent) number Aspect

1 Swodish §3 axcior L5852

W
. FF4 104-5106

20 NACA 0012 12 L7 to3XI10® 43,23

a 0] Qs | .4toeXioe (1%3)1

22 NACA 0012 i2 2 4X108

T Sea text for explanarion or qualification.

BERNDT (REFERENCE 1¢) AND LANGE AND WACKE

(REFERENCE 20) (SEE TABLE III)
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TABLEIV.—EXPERIMENTAL DATA ON LOW-ASPECT-RATIO
TRIANGULAR WINGS TAKEN FROM REPORTS.  BY

(8) Reference 19 {Cwm referred to jes and taken about point jes back from apex)

A=52 Am=53 Aml

a« Cr Cu a Ce Cn « CL Cn
—3.7 | —0.168 0029 | —48 | —0.185 0036 | —42 | —0.08C 0.023
—2.7 - 122 022 | -2.8 —. 130 020 | --3.2 —. 0% .018
—-L7 —. 073 014 | —28 —.068 02 | —-2.3 - .012
—~.8 —.02 008 | ~LT —. 060 .18 | —L2 —. 028 .007
.4 020 | —.002 -7 -—.023 008 -3 —. 005 002
L5 060 | —.000 -3 008 002 .8 .018 —. 003
2.5 U8 T =017 L3 043 | —.005 L8 042 —.009
3.5 JI60 | —. 024 13 08 | —-.012 28 064 —.014

4.6 205 | —t 34 L4 | —.019 3.8 . 068 -

4.4 L1490 | —.028 4.8 . 110 —.025

(b) Reference 20 (Cw referred to fceand taken about point fes back from apex)

A=1 A=43
a CL Cn 3 Cr Cn
—5.84 ~G 1258 —Ogg —5.81 —0.132 ~0. 0101
1] —. 0002 - (sic) .002 0
58 . 1253 0067 580 138 . 0089
Am2 A=3
@ CL Cu « Ce Cm
-5 71 —0. 2378 —=0.0177 —5.65 —0.2830 —0.0285
—. 0180 —. 0007 .03 - 0152 .oo?a
&8 . 1961 . 0180 500 .2561 0811




